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Abstract

Nongaussian noise occurs sufficiently often that a study of its points
of similarity to and difference from gaussian noise is desirable . This re-
port considers an important sub-class of non-normal statistics, viz., nearly
normal noise. A new form for the nearly gaussian probability densities has
been found; this is discussed, compared to the conventional Edgeworth series,
and related to earlier work. NMNext a survey of physical noise sources is made
in order to classify the statistical nature of the noise that each produces. The
rectification of nearly normal noise and a c-w signal in a half-wave vth-
law detector is analyzed and the correlation functions of the output obtained.
The behavior of the output is compared to the corresponding results for
gaussian noise of the same input intensity. For the linear and square-law
dete;tors, the cases of prime interest, detailed figures and a number of more
tractable formulas are given. Finally, the problem of finite averaging is
briefly considered.

Introduction

This report considers the rectification of a-m signals and nongaussian
noise. The corresponding problem in which the noise is gaussian is particu-
larly important because most noise sources are gaussian ones and because
the normal distribution is easy to handle analytically. Quite properly, early
work considered gaussian noise nearly exclusively. Nonetheless, certain
types of noise do not have normal distributions, so that an analysis of the
non-normal case is desirable, both to apply directly to problems where it is
applicable, and to help to indicate in uncertain cases how critical the assump-

tion of gaussian statistics is. We note that because of the presence of a non-
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linear element in the receiver, viz., the rectifier, the output moments
depend on the entire input distributions, so that the input statistics affect

even the simplest of the output properties.

The noise of the present paper is nearly gaussian so that the proba-
hility distributions can be expanded asymptotically in terms of the corre-
sponding normal probability distribution and its derivatives. This is the
well -known Edgeworth series [ 1]; however, the form that we have found
most useful, which involves derivatives with respect to the second moments
of the distribution, has apparently not been mentioned before. Pearson [J
used the idea for a special distribution in order to facilitate deriving the
usual Edgeworth series and Crofton [ 3] has obtained similar equalities
between different kinds of derivatives in a separate derivation of the
Edgeworth series. The application of our results depends partly on the
fact that, after passing through the tuned stages of the receiver, the noise
is narrow-band. We have obtained relations connecting the distributions
of the envelope and phase of the noise wave to those of the instantaneous

value, which also appear to be new.

A survey of physical sources of noise has been made to determi_ﬁs,
whenever possible, whether the noise produced is gaussian or nongaussian
and to suggest noise models for use in the analysis of the detector. The
correlation function at the output of an idealized a-m receiver with a
vth-law rectifier has been found when the input is a nearly normal noise
and a c-w signal. The result is fairly intractable in general, but formulas
have been obtained. Graphs have been drawn for the two most important
cases, linear and square-law rectifiers, with various representative types
of noise inputs. The general effect of nongaussian noise compared to
gaussian ~ise of the same input power has been found for both the output
power and the output correlation function. Finally, the effect of averaging
the output over a finite time has been examined, again qualitatively,in general,

and w.th explicit results and figures for the quadratic detector.
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Probability Distributions of Nearly Gaussian Noise

2.1 General Properties of Probability Distributions

A sufficient characterization of systems containing noise requires a
statistical description of the noise, viz., the joint probability densities of
the noise at a set of different values of the time, or alternatively, know-
ledge of the ensemble from which the sample functions actually observedare
drawn [ 4,5,6]. The noise processes with which this report is concerned
are Markeffian [ 7,8], which means that knowledge of the joint distribution
at two times is enough to describe the process completely. Thus two distri-
butions will be needed for each variable,

Wl(y,t)dy = the probability that y will lie in the interval
y, y and dy at time t and,

Wz(yl,tl; yz,tz)dyldy = the joint probability that y will
lie’ in vy vyt dy1 at time t,, and that y will lie in Y,
Y, + dy2 at time tz.

As the time difference between the two times of observation is increased,
the dependence of Yy, ony, is lessened until with sufficient separation, Y, and

y, are independent; that is

lim
Wolyots yout, =8 + t) = W ly,,t, )W {y,,t,). (2.1)
56 211 Y22 T 1 | R4 Rt A AR A A

The characteristic function of the noise is the Fourier transform of the

probability distribution [9,10].
_ 2 i5,y, +i5,y,
Fo(3,:t;:E,t5) = e W, (y oty poto)dydy,.  (2.2)

This. function is introduced because problems are often simpler when
phrased in terms of transforms than when stated directly in terms of the

probability densities.

A further important concept is that of stationarity {11], which means
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that the distributions are invariant under a linear shift of all the times
of observation. W1 thus does not depend on t, and W2 depends only on

the time difference tz-tl.

An important set of parameters associated with a distribution.are

its moments, defined by

(t)

mn
Fmn =_[7 Y1 Ya Wolypey,itldydy,. (2.3)

-0

Because of its particular importance, p.u(t) is given a special symbol,
R(t), and a name, the correlation function. It serves as a simple but not
entirely reliable test of independence of the noise values at two times sepa-
rated by an interval t.* Also, the spectral distribution of the necise power
can be found from the correlation function by using thz Wiener-Khintchine
theorem [12,13],

a0

W(f) = 4f R(t)cos wt dt,
[o}

(2.4)
[0 0]

R(t) = f W(f)cos wtdt.

[o]

When all the Kth-order moments exist, the characteristic function

possesses an expansion in terms of the moments [ 9,10],

F,(5).5,it)= Cexplilyy) + 55,0,

K
B oanlt)
=5 I G5)™as,)R oyl + 5 Y. (2.5)

A different set of parameters of the distribution are the semi-invariants,

defined from the expansion of thc logarithm of the characteristic function

[9,10].

#It is in fact a '"wide senss' test for independence, in the sense of Doob, sec 23.
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o (1
In F(5,,5,:0) =Z\ (i35, L. (2.6)
oK

By comparing the two power series, relations between the moments and

semi-invariants can be found.

The sources of noise considered in the succeeding section are
.

Markoffian and stationary; furthermore, they are representative of Poisson

ensembles, a particular class of distributions of sums of independent random

variables,

2.2 The Poisson ensemble

The Poisson noise ensemble is composed of sums of independent
variables with common distributions and uniformly distributed times of
occurrence, tj, viz.,

K

V(t:K, {tj}) =Z vilt-t).

=1

Physically, the basic random variables represent pulses produced
randomly by a noise source. These hypotheses imply that the number of
pulses occurring, K, is a random variable with a Poisson distribution [ 13,14] ;
so that K, as well as the set of tj's, is an ensemble parameter. The vari-
ability of K distinguishes the Poisson model from the random walk problem
where K is a fixed, known number [ 2,15]. This difference is not a necessary
consequence of either model. However, with superposed pulses, the natural
condition of uniformly distributed occurrence times leads at once to a distri-
bution of K. In a random walk, on the other hand, a fixed number of steps
seems more natural. In this paper, !'random wailk" and '"Poisson'' models

wili always refer to ensembles with a fixed or variable K, respectively.
The distributions of V can now be derived following Middleton [16]} .

Because of the independence between pulses the characteristic function

for V when K pulses occur is the Kth power of the characteristic function for

V.

FovBr Sk = [Fpy, (51501 (&)
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The desired characteristic function is the above one averaged over the values
of K.

(e o]

K
FZV(EI'EZ) = Z %{{—i— e-Y[FZV(El’EZ)]K = exp {Y[sz(gl,gz) - 1] s (2.8)
K=0

Here y is the average pulse density, the average number of pulses per

second times the average duration of a pulse:

The above equations exhibit a« consequence of the different ensembles for
Poisson or random walk models. In the Poisson case, the semi-invariants of
V equal y times the moments of v; in the random walk (Eq. 2.7j, the semi~
invariants of V equal y times the semi-invariants of v, i.e., the fixed value
of Kis y.

In the general model, individual pulses are themselves random variables

with distributions of amplitude, phase, duration, and occurrence time, viz.,

v(t-t') = a hip[t-t']; r) cos [wo(t-t') + 4] . (2.9)

Here a is the amplitude of the pulse; h, its shape factor, which depends
on the occurrence time, t', and the duration, r(the time variable has been
normalized by dividing by the mean duration r = 18); and  is the phase of
the pulse. Most systems in which noise is important are spectrally narrow-
band; accordingly v(t) has heen written as a slowly varying envelope factor,
h(pt;r) times a rapidly varying '"carrier' wave. In terms of these random

variables, the characteristic function for a single pulse is
= ! ' { 1
FZV(EI,EZ) fdaldazdr]_drqu,ldq,zdﬁt,dpt zdﬁtl)(w(al,az,rl,rz,q;l,xpz,ﬁtl,ﬁtz)

exp{ialglh(ﬁ[tz-t'l] ir)) +ia.2§2h(ﬁ[t-t'2] . r)} . (2.10)

A specific noise source will not usually produce pulses variable in all
these quantities, so that the problem of evaluating the above integral is not

so formidable as it may appear.

The moments of a distribution are always of interest; in this paper,

they «:re particularly so since we shall be concerned with nearly gaussian
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distributions where only the first four sets of moments appear, not the

general form of the exact distribution.

For simplicity, let us consider a noise source that produces pulses at
random times but with specific amplitude, shape, and phase. Then the gemi-

invariants of the output are

an(t) =y <am+nf hm(x;r)hn(x+Bt;r) cosm(wac/ﬁ-¢)CUsn(mox/ﬁ- g+ wot)dxav,

e (2.11)

where ptl has been set equal to a new variable, x, and t

t, +t.

2 has been changed to

1

As is justified in Appendix I, because of the narrow-band structure the
phase may be assumed to be distributed uniformly. Carrying out the phase
averagea first then simplifies the form of Xnm(t) considerably in specific
cases. In general, one has

A_ () =0 m +n odd,
mn

A (t)

mn

Ml t) (2.12)

which last follows directly from Eq. (2.7) above, quite independent of the
narrow-band assumption. The second and fourth order semi-invariants

are then

00
N 11(t) = \.l-é—<a2 f h(x;r)h(x+ﬁt;r)dx>avcos wt, = q;ro(t) coswt = yr(t);

A =X

!
>~
()
s
O
—
m
o

20 (2.13)

oo

] N 2?_(t) S y% <a4 f hZ(x;r)hZ(x -!-pt;r)dx)av (2 + cos Zmot),
-w

4

X31(t) =\ 13(-t) =y-§-.<a4 J h3(x_;r)h(x+ﬁt;r)dx> ay CO8 W b,
oo
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Lx40=x04=x31(0)=x22(0). (2.14)
It is convenient to separate the low-and high-frequency variations
in the fourth-order semi-invariants just as, in \ 11(t), the q,ro(t) is distinct

from the carrier part. Defining a low-frequency factor Am'n(t)’ so that
/\mn(O) = N ,,(0), We have

N oolt) =\ (1) 2/3 + 1/3 cos 20, t]. (2.15)

N 5(t) =A31(t) cos w,t
M40 =A40'

2.3 Nearly gaussian distributions

A nearly normal distribution may be asymptotically expandedin terms of the
limiting gaussian form ininverse powemof y. To get the asymptotic series, we
write (2.6) as

AL, (t) (t)
M40 v 4 31 3 N2 2
F,(5).5,t) = { 14— 5] + —5+— 515, + 5731 5 52

(t)
+___.133, 555+ TB“ +0.1(y” )} (2.16)

X exp {% B; +2x(15, 3, +3§]J :

The symbol OT( Y 2) means that, after the transform is taken, the
neglected part is of order Y-Z. All the semi~invariants are of order Ys
V2 is of order <V2>, so that 5.1 is of order vy ki . Thus the M = 4terms
are of order y ; the next succeeding terms, M =6 and the square of M =4
terms, will be of order y-z (odd order semi-invariants, when not equal to
zero, introduce fractional powers)[ 17]. The probability density corre~r

sponding tc the above characteristic function is

4 4
o Mgg 9 A3y (t) 9 AL a4
WV Vot ey 2 . + 5750 s
oo, ' avyev, 2%t avievy
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vZeve-av v r(y)
1 2 1 2 !
X - (t) 84 X 84 - exp{ =
+ 13 : + 04 — + O(Y- )1 24‘ vl - r (t)

2 J 2n ¥l - rz(t)

(2.17)

This is the two-dimensional form of the well-known Edgeworth

series [1].

Another form of this probability distribution is possible, in which
derivatives are taken with respect to the second moments (for the derivation

of this result, see Appendix II).

The characteristic function is

Aot 82 32 2 9 8 9
F (5,5t :{ Ll [3¢2 k& 5 2] NI N [Asl(t)Wl * /\13“)WZ‘]
1 2 .
A, 2 2
22 19 9 =3
| + 2 + O Y ) (2.18)
B [¢2 E;f 2 15“‘2] o

X exp{-% [q’lgf + 241 (t)5, 5, cos ot ¥ ¢2§§]}
154, ¢

The probability distribution can be obtained from this by transforming
the exponential alone.

The series (2.18) was first found by Pearson [ 2] for the first order
density in the random walk, using the properties of Bessel functions; but
apparently it has not previously been extended to any general class of dis-
tributions. The only condition needed is that the random variables be iso-
tropic. Even if this is not so, a similar series involving also derivatives
with respect to the first moments may be found. However, the latter is
sufficiently involved so that little advantage is to be expected in using it

rather than the Edgeworth series.

For moments after a nonlinear operation, the comparative simplicity
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in the analysis when the noise possesses a gaussian distribution is often
a strong point in favor of the series of parametric derivatives. Applying
the differential operator to the result for ( ncnstationary) gaussian noise
is likely to be involved, but is certainly straightforward. Furthermore,

where the narrow-band structure of the output is important, this charac-
teristic function possesses the very considerable advantage of having the
high-frequency part appearing only in the exponent, while the Edgeworth

form has high-frequency terms of different orders scattered about in the

various semi-invariants as well as in the exponent.

2.4 Envelope and phase distributions

In narrow band problems, it is sometimes more convenient to take
the slowly varying parts of the noise wave,as the random variables, rather
than the instantaneous value. The distributions obtained are more com-
plicated, but in return this technique entirely eliminates high-frequency
terms in the probability distribution. A narrow-band ensemble can be
written as

V(t;a,p) = R(t;a)cos [wot -0 (t;B)] . (2.19)

where the envelope and phase are random variables not, in general, in-
dep:ndent (which means that the ensemble parameters a and Biare function-

ally related). In terms of in-phase and quadrature components,
V(tiy[a.p].8[a,p]) = X(tiy) cosut + Y(t;8) sinwt. (2. 20)

X and Y are not usually independent either. It is frequently easier to find
the distributions of X and Y and afterward, by transforming to polar coordin-

ates, find the distributions of envelope and phase.

From the equation above, it is evident that krowledge of the distribu-
tions of V is equivalent to knowledge of those of X and Y. The explicit
connection between these two different representations of the noise wave has

been found under the condition that the phase is distributed uniformly.*
*A general four-dimensional distribution has thirty-one non-zero fourth-
order semi-invariants while the corresponding distribution of V has

only five. Finding that a connection between the two distributions is highly
desirable in the interest of algebraic simplicity alone.
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In case only the marginal distributions of envelope and phase changes are
needed, the condition on the phase distribution may be dispensed with. It
should be pointed out that, while the fact that V is narrow-band and nearly
gaussian implies that it is isotropic, because of the high-frequency variations,
that is not true of the slowly varying components, precisely because the high-
frequency part has been removed. Furthermore, while the requirement that
the phase be uniformly distributed is satisfied for a good many noise sources
of interest, an almost equal class will not fit this scherne, so that the restric-
tion is more severe than desirable. Fortunately, for the detection problem,
and indeed for all cases where only the low-frequency output is needed, the
isotropy condition can be eliminated by working with the distributions of the

envelope alone.

The high-frequency variation of the characteristic function of V contains
always cos w,t To put the high-frequency dependence in evidence let us write
the characteristic function as sz(gl,gz; t, cos wot). Then, if the charac-

teftstic function for X and Y is transformed into polar cocordinates,
Fox,y(X1npXpmait) = Fax y(5) cos$).5, sind),5,c0s6,,5,sin 6,

(2.21)

the connection between the two is
F,x y(5cos 6.5siné,,5,cos 6,:5,5in8,:t) = F, (5. F,it, cos [6,-6/]),

(2.22)
a result derived in Appendix IlI, on the assumption of a uniform
phase distribution. Without any restrictions on the phase, however, the

distribution of envelopes and phase difference may be found. We have

© o0 2«
= dé
W,(R|:R,.,0) =R|R, /// —= %, 5,dE 45,
(2m)
[o] (o] (o]
J 2 _2 BZ 2 S 1/2
& 0([81 R1 & 2 RZ it 231 ZRIRZCOS(Q - ¢)] (2.23)

% FZV(BI’SZ; t, cos @),
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WI’lere g = 92 = 91) é e ¢Z-¢l

As an important special case, one finds

Qo

Wl(R) =Rj EJO(ER)FV(E)d‘g. (2.24)

o

The above relations are true of narrow-band distributions in general;
these must now be applied to the nearly gaussian distributions which are our
primary.concern. If there is an unmodulated carrier present as well as the
nearly gaussian noise, the instantaneous value of the sum of the two may be

written variously as

Z(t) Ao cos wot + V(t),

[Ao + X(t)] cos wt + Y(t)sinwt, (2. 25)

x(t) cos wot + y(t) sin wt.

Using Egs. (2.1), (2. 21), (2.25) together, the distribution of the envelope

T -R? +A§
2 A R N T
40 0o R o ’ 2y

is found to be

1
- * (2. 26)
i 2A R 4A°R 2
+ 7 — (A +R )] II(AOR/Lp)
2 a2
‘(RZ + Af;)z 8(A§ + RZ) - :l[_+A_°
+ — e 2 7
|yt v ] <

A nearly gaussian distribution is shown in Fig. 1l for various values
of signal-to-noise-power ratio together with gaussian noise of the same
mean square value. Before the nearly gaussian distribution can be plotted,

a value of the fourth-order semi-invariant must be assigned. The graph
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here represents a noise source producing square c-w pulses of constant am-
plitude, serving as an approximation to clutter in a radar system. ./\.40/3! xpz
then becomes 1/4y , where y is the density parameter previously defined

(Eq. 2.8). The nearly gaussian distribution has more small deviations from

the mode and a larger tail than does the gaussian.

As pointed out previously, the random walk model is not equivalent to the
Poisson one. For this noise source, the deviation of the random walk distribu-
tion from the gaussian are equal in sign but opposite in magnitude to the devia-

tion of the Poissonmodel distribution in the figure {for equal densities). Ingeneral,

N A
= U P (2.27)
2 2 Y
g Pobisson b Random

Walk

when the Poisson and random walk densities are the same.

The phase distribution presents a more difficult problem. The sumofa
sine wave and narrow-band noise will not have a uniform phase distribution since
the phase of the carrier takes apreferred value. If, however, the noise by itself
has a uniform phase distribution, then the desired distribution may be found by

transforming coordinates from X,Y of Eq. (2.20) to x,y of Eq. (2.25).

The joint distribution of envelope and phase is thus

2. .2
W.(R,0) = 1+A40 92| R - _..R +A - 2A Rcos®
1\R.8) = 31 Zmy &P P .

ay &

whence
2
N, a2 -psin“@
_ 40 ° e 11, 2
WI(Q) = [1 +Ta?]z; [A/pﬂ'COSO"'lFl("Z,iopCOS Q)]
or as a Fourier series.

a0

m
€_Pp cos m@
W (0) = E = r(%ﬂ){mﬂ;_;mn;-p) (2. 29)

m=0

\40
(m+2) ., m . .
oY 2 R (542 mtL -p)}

The envelope distribution, Eq. (2.26) can also be derived from Eq. (2.28)
by integrating over the phase, but its previous derivation directly from
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Eq. (2.24) emphasizes that no assumption on the phase distribution is

necessary.

The second-order distribution is needed for calculating correlation

functions. For a nearly normal noise alone, from Eq. (2.23) we have

s 2
8 2 2 9 ..y O 9
Wy(R.R,,8,,8,it) =R R, 11+ +a7r 5= lag D s— *A | {t) 5]
2V 12 1 Z{ [8¢1 34-‘22] 3ty BIO’A‘31 8L|J1 lé 8¢z
2
Ao (it 2 2 ) P -24r R R_cos8+y R
22 1 d 2 -2 21 o172 1
+ [ +2 ]+ 0(y )Jexp{—
el N, 204y, - 471 %)
(2m (4, - 4°r )
Yy, Y
(2. 30)

where 6 = 92 - 91, and the parameters are those of Eq. (2.18).

If a sine-wave signal is also present, the distribution of the envelopes
and phases of the sum can be found by transforming variables in Eq. (2. 25)
to the polar coordinates corresponding to Eq. (2.20). The result for a

gignal and noise is

W, (R .0 ,R,,8.,;t) = o a0, 0% az]+ e [A (t) gt A L (t) o]
- G s 3ﬁ8¢1 8¢§_ 31y a 31 ’6¢_ 13 ’a—
AL (t) 2 R.R
[ +za¢aa¢ J+0ty 2| L )
4 or ° 19%; ](Z'n') (1, - 47 2)

2 Z

{ A (q,;l 2yr +n.|42) qu)z Z.j;r RR ,C08 9+\.|,1R2 nnl(q)z pr_ )cose +A Rz(».pl Yr )coseil
exp &
204,10 4") 244, - 471 5) Yy - v )

Wty

(2.31)
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I1X

Physical Noise Sources

3.1 Introduction

A search through the literature has shown that the Poisson noise
model is applicable to most actnual noise sources, although the range of
densities characteristic of nearly gaussian noise is found only occasionally.
The five principal groups of noise sources (not all microscopichlly distinct),
considered below in the same order, are those associa;ted primarily with
(1) radar, (2) sonar, (3) atmospheric disturbances, (4) extra-terrestrial

generators, and (5) the quantization of charge.

3.2 Sources of noise in radar

Undesired echoes in radar are an exampie of Pcisson noise. Besides
the desired target echoes the radar picks up signals from the surface of the
sea or ground, from storms, and from "windcw'' -~ metal strips used to pro-
vide spurious target indications. All these are lumped under the generaltitle
of 'clutter' [18,19].

In a pulsed radar (with a fixed pulse repetition frequency), the input
signal following a transmitter pulse represents the echo obtained from a
range proportional to the time elapsed since theinitiation of the transmitter
pulse. At the start of the next pulse, the range is set back to zero and then
increases again, as shown in Fig. 2a and b. In analyzing clutter, we want
the return signal from one fixed range, Ro’ which, as shown in Fig. Z2¢,
is a number, viz., the amplitude of the echo. Before being presented to
the observer, the signal from a fixed range is converted to '"boxcars,

Fig. 2d, and then smoothed, as in Fig. 2e, to give the final form. The
display is presented on a cathode-ray tube where the persistence of the
phosphor serves as the boxcar generator. Variations in the clutter return
between successive pulses are quite small, so that the smoothed represen-

tation is an accurate one.

The return, nominally from a single range, R’ actually comes from
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a small volume around R within which targets cannot be resolved. The
ncn-zerc angular widths of the antenna beam, @ and $,* mean that targets

in a solid angle 9& will be illuminated simultaneously. With a pulse du-
ration, 7, targets in a range interval of length c' 7/2, where c is the pro-
pagation velocity, preduce echoes which overlap the return from R: thus

the resolving volume is Rcz) ® ¢ c 7/2. For typical radars, the pulse duration
is about 1 psec corresponding to a range interval of 150 yards and the beam
widths, 0.5-50, so that, up to ranges of 1-10 miles, the shape of the resolving

volume is narrow and deep, while at greater ranges it is broad and shallow.

The clutter retirn at the detector is represented by, as in Eq. (2.9),

K
v(t)) = ZA“( h([t, - t'lk]/rr)cos(mo[ t -t - dy)s (3.1)
1

where the scatterers are independent and uniformly distributed through-

out the resolving volume. Here A K is the amplitude of the echo from the

kth scatterer in the resolving volume and Yy its phase; e is the pulse shape,

a constant of the transmitter, but also a functicn ¢f the time of arrival of

the received pulse; 7 is the duration of the puise, also constant; and W, is

the i-f frequency. The average number of scatterers in the resolving voiume
is the density parameter of the clutter, because the ordinary definition of

y as the average number of pulses per second times the mean duration of a
pulse must be divided by the amount of time that the radar receives echoes

from the single range Ro‘

If the obstacles are moving relative to the radar, the clutter at a
later time will contain variations because of a shift in the epochs
ti(. The effect of motion can be important; however, the problem is treated
in Appendix IV, since the analysis is moderately involved and does notbear

directly on the noise density, our primary concern in this section.

Echoes from "window"

One important type of clutter is '""window," echoes from metal strips.

Analysis of the gcho from a strip [ 20] shows that the amplitude depends on

» @ and ® are equivalent rectangular beam widths in their respective directions.
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the orientation with respect to the direction of propagation, but that the time
over which the correlation function differs from zero is much smaller than
the rotation time of a strip, so that the amplitude return is effectively con-
stant in time i.e., a1=a2). The total number of strips in a resolving vol-
ume is large enough so that the noise is gaussian if the strips are physically
independent, however, they might cohere in clumps so that there are only a
small number of effectively independent scatterers. Unfortunately, present
measurements of distributions [ 21,22] contain enough experimental uncer-

tainty to mask any nearly gaussian deviations.

Echoes from precipitation

Rain, hail, and snow also may give radar echoes, particularly at higher
microwave frequencies [23]. This particular problem may be formulated in
terms of reflections of a plane wave from an aggregate of spheres. Trinks[24]
has shown that for Rayleigh scattering interaction is negligible if neighboring
spheres are two or three diameters apart. Meteorological observations of
rainfall [25,26,27,28] have shown this requirement to be well satisfied.
Humphreys [29] gives the weight of raiiu water in the air per cubic meter as
a function of the rate of rainfall, while the NEL group [27] and Laws and
Parsons [26] give distributions of drop sizes as a function of rate of rainfall,
The drop distributions are apparently not single-valued functions of rain in-
tensity, but they are consistent enough to make an approximate calculation of

the density parameter, y , possible.

As the rate of rainfall varies from 0.25-100 mm/hr. (from drizzle to
cloudburst), the weight of suspended water goes from 0.1-5 g/m3; and the
average drop radius, from 0.05-0.15 cm. The drop distribution gives the
relative amount of water at the ground contributed by drops of a given radius.
This is the important disiribution, since what is needed here is the amount
of water in drops of a given radius, not the number of such drops. The dis-
tribution should be corrected by dividing by the terminal velocity distribution
of the drops; this will give the drop distribution in the air. Since the larger
drops travel faster, this correction reduces the average drop size, and so
increases the density parameter. As the lower figure is found to be large
enough to provide gaussian noise, additional refinements were felt to be un-

necessary.
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The average number of drops per cubic meter is then 150-400, varying
with the rate of rainfall. This correspecndsa to an average distance between
drops of 12-8 cm. Since the distance required for negligible interaction
between scattering for different drops is 0.3-0.9 cm, it seems clear that any
lack of independence in the scattering is small enough to be ignored. This
many drops. scattering independently, give a normal noise return from each

cubic meter.

The same conclusion may be reached with more careful reasoning,
by dividing a cubic meter into cubic cells such that the scattering from pairs
of drops is interdependent only if the drops are in neighboring celle. The
cells prove to be numerous enough (several million to the cubic meter) that
the possibility of having more than one drop per cell is negligible. Since the
drops are distributed uniformly and independently, the conditions for a
Pcisson distribution are satisfied. The number. of interacting pairs also
possesses a Poisson distribution. A calculation of probabilities shows that
for all rain intensities, 99.9 per cent of the time, less than 1 per cent of the
return will be from interacting drops. These ""exact' figures should not be
taken too literally, but they do illustrate the overwhelming likelihood of in-

dependence.

One of the salient characteristics of rainfall is its inhomogeneity, both
temporally and spatially. With rain gauges less than 5 meters apart,
Rado [ 28] found variations of from 5 to 20 per cent in the measured rainfall,
while the NEL group [ 27], with gauges 200 meters apart, found much larger

differences.

Thus, in one resolving volume, the rain is almost certain to be non-
uniform. If the non-uniformity represents merely a statistical fluctuation,
then unquestionably the noise is gaussian. If this is not so, on the other hand,
the volume may have to be split into subvolumes, each of which has different
statistical parameters. In this case, the subvolumes will be larger than a
cubic meter, so that the total return will be a superposition of gaussian noise
from each subvolume, and therefore gaussian itself. The conclusion from
the above is that clutter from meteorological precipitation is effectively al-

ways gaussian,
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Echoes from the sea surface

Another source of clutter is sea return—echoes from the sea sur-
face [30,31] . Exactly what reflects the incident pulse is an unsettled
question; quite possibly the mechanism may differ for different grazing
angles of the incident beam. There are three possibilities; (i) specular
reflection from the waves themselves, (ii) reflections from ripples on the
surface of size coraparable to a wavelength, or (iii) reflections from spray

droplets.

The radar cross section* oi the sea for high grazing angles shows"
large values that apparently are due to specular reflection. The data for
low grazing angles do not show this effect, so that it is not sufficient to ex-

plain all the results [31,32].

The dependence of cross section on polarization favors the droplet
theory. For fairly calm seas, the cross section fior horizontal polarization
is smaller than that for vertical; the difference becomes smaller for rougher
seas and at moderate roughness becomes negligible. This can be explained
by destructive interference between the incident and reflected waves above
the surface at the height of the droplets. A rough sea destroys the inter-
ference pattern, making the cross sections for the two different polariza-
tions equal. The shifting of interference patterns with grazing angle suffices

to explain the observed dependence of cross section on grazing angle [33].

On the other hand, measurements of the dependence of cross sectionon
wavelength[32],indicate a x-4behavior, which favors ripples as against
both droplets and specular reflection. Also, the drops needed to produce
the observed magnitude of sea echo are much larger than those found in
practice. The approach to a limit of the cross section at low wave heights
(2-4 ft) also favors ripples, since with high waves, more and bigger drops

and steeper wave fronts are present. The last two factors would favor a

*The radar cross section of an obstacle is defined as the area intercepting
that amount of power which, when scattered isotropically, produces an echo
equal to that observed from the target. For sea return, the cross section

is expressed as a dimensionless ratio by referring it to unit area of the sea
surface; it may be greater than one if the actual scatterers are not isotropic.
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continued increase of cross section with wave heigirt, if drops or specular

reflection were the primary mechanism.

The nature of the scatterers is not settled; the cbserved distributions
are usually gaussian to within the limits of error of the measurements.
This cannot be accepted as conclusive, however, because of the major effect
of deviations from the normal law appear in regions of large amplitude,
which is the part of the distribution most difficult to obtain accurately. A
long period of observation is necessary to accumulate enough high-ampli-
tude returns to decide whether the clutter is gaussian or nearly gaussian.
Because of the finite lifetime of the scatterers, whether drops, ripples or
waves, it is entirely possible that the clutter statistics be non-stationary
over the times necessary to measure the tail of the probability distribution.
In fact, the only sea return distribution in Kerr [24] that includes the larger

amplitude region is distinctly non-normal, from whatever cause.

The measured relative cross sec¢tion is -30 to -70 db, i.e., as though
10-3 to 10-7 of the illuminated area were isotropically reflecting. This
is so low a value as to argue against specular reflection. ‘Ina typical re-
solving area, there are 104 or 105 sq. ft., and, assuming a ripple reflector
to cover several square feet, we see that the noise may well be nearly

gaussian; no more definite conclusion can validly be drawn.

3.3 Sources of noise in sonar

Sonar, considered as an echo-ranging device, is very much like radar
in its basic operation. The wavelength and resolving volume.are of the same
order of magnitude as in radar, because of compensating changes in the
other parameters. Typical values for a sonar [35] are: transmitter fre-
quency 24 Kc/s, pulse length 0.2 sec, bandwidth 6-10°, and the velocity
of sound in the sea, 1600 M¢s. Then the resolving area is about 300 yards
in range, varying laterally with range, and the wavelength is about 6 cm.
Serious additional problems arise, however, because of the dispersive

properties of sea water.

Reverberation

Sonar clutter comes from reflections from irregular inhomogeneities
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of the ocean, and from the irregular boundaries at the surface and bottom;
it is usually called reverberation rather than clutter [36,37,38]. The im-
portance of the three types, ""volume," "'surface,'" and ""bottom' rever-

beration varies with circumstances as shown in Table 3.1.

Volume reverberation is caused by sound scattered by air bubbles
suspended solid matter (e.g., plankton, fish), and small thermal inhomoge-
neities. The measured relative cross section, i.e., scattering area per

8 to 10-5 yd-l at a medium range, 800 yds.

unit volume varies from 10~
This makes the total scattering area in one resolving volume (c. 10 yd3)
.01-10 yd.2 All of the above-mentioned scatterers, except for fish, are
much smaller than a wavelength, so that the individual cross sections
should be very small, except for those few ascatterers of a size resonant
for the particular transmitter frequency. Then the received noise is

'"dense' enoughto be gaussian.

Table 3.1

Predominant Type of Reverberation

volume surface bottom
v
- Smooth sea

vd

Deep short range
Water ¢ f ' |/
Rough sea T

long range v

L (> 1 mile)
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At ranges less than 500 yards, reverberation from the surface
may be 20 to 30 db higher than that from the volume. Surface rever-
beration drops off at long ranges faster than volume reverberation; in

addition, it depends strongly on the sea state.

As a function of wind speed, the return starts to increase at 8 mph,
when whitecaps start to form, and continues to rise until it saturates at
20 mph with the reverberation intensity 35 db higher than the initial level.
This wind-speed dependence favors bubbles or ripples as the cause of
scattering; however, again definite conclusions cannct be reached. An
analysis of the scattering from a dense layer of bubbles shows that their
cross sections are not large enough to account for the experimental resulis
by themselves. Scattering from ripple patches can provide the necessary
return alone; however, the observed reverberation is probably a combination
of the two [39]. Bubbles provide a gaussian return; the return from the
ripples cannot be calculated without some knowledge of the ratio of the
geometrical cross section to the scattering one. An estimate of yis
attempted here to point out the lacunae in our knowlcdge that preclude
definite results.

The relative cross section for surface reverberation varies from

3 -6

1077 to 10 At 300 yd, the resolving area is 9000 ydz, which cor-

responds to 9 to 9 x 10-3 de of perfect isotropic reflectors. The
simplest assumption for the actual reflectors is that they are '"perfectly
diffuse," so that Lambert's law applies. At 300 yd, the angle of incidence
with the surface is about 6 degrees, with both incident and reflected flux
corrected to normal incidence, 900-0.9 yd2 is the area of the scatterers.
Since the reverberation intensity is found to be frequency-independent, it
follows that the scatterers must be several times as large as a wavelength,
say 1 yd'2 for 24 Kc/s sound. There are then 900-0.9 scatterers per re-
solving area, a density range including both gaussian and nearly gauseian

noise.

The above figures must be considered as simply illustrative. A
proper estirnate requires knowledge, rather than assumptions, of the back-
scattering from a ripple and the average size and structure of ripples. In
addition, some knowledge of bubble-density is needed in order to estimate

how much of the surface scattering is caused by bubbles.
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Bottom reverberation is important only in shallow water; however,
there it is likely to be the dominant factor. This scattering arises from
irregular features of the bottom, comparable to surface reverberation from
ripples; again, not enough is known about the back scattering from the types

of obstacles likely to be encountered to make a density estimate possible.

Noise from marine life

A type of noise that has no counterpart in radar is that produced by
marine life [40,41]. The important distinction is that not echoes, but ex-
ternally generated noise is present. Most of these noises are markedly
diurnal and seasonal; one important type, generated by the snapping shrimp,
is both widespread geographically and continually produced. Results for
this noise are available in sufficient detail to permit an estimate of the ex-

pected density [42,43].

The shrimp that produce this noise are of several species, all of which
are small (about two inches long) and possess a large snapping claw, which
is directly responsible for the noise. These shrimp are distributed in
tropical and subtropical watersat depths less than 60 meters, with a rock or
coral bottom. Investigation off San Diego has definitely located the shrimp
as the source of crackling noise found along the California coast. Among
other areas in which both snapping shrimp and loud underwater crackling
noise are found are Beaufort, N. C., Cape Hatteras, the Bahamas, Puget

Sound, and several locations in the Central and Southwest Pacific.

One of the important features of this noise is that its spectrum is
very nearly flat from 1 to 15 kc, while most underwater noise varies
according to a (1/f) law. Shrimp noise is thus particularly prominent at
the higher frequencies. Measurements on an individual snap show an
average excess pressure of 60 db above 2 x 10-4 dyne /'cm2 at a range of
1 meter. Corresponding figures from four shrimp beds found off San Diego
are 43 db and 16 m, 34 db and 30 m. 35 db and 44 m, and 45 db and 20 m.
The density can be found as the total power divided by the power per snap,
both measured at the same range. For the four measurements above,

y is 5,2,6, and 12 respectively,values characteristic of the lower range of
nearly gaussian density. The noise has been described as ''like static

crashes'" or ''coal going down a metal chute,'" which qualitatively tends to
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indicate a fairly low noise density.

3.3 Atmospheric noise: lightning

Lightning also causes noise; however, each stroke produces only one
pulse so that the noise is not dense enough to be nearly gaussian. Study
of lightning shows that initially there is a moderately slow downward stroke
followed by a rapid upward discharge, of durations roughly 10 and .05 Mc/s
respectively. After this, there is a further slow change to equilibrium.
Superimposed on all these field changes are small, more rapid variations
caused by fluctuations in the resistance of the ionized path; furthermore,
multiple reflections from the ionosphere may occur {44,45). One result of
the presence of several different components is that the received wave form
depends strongly on the distance of the receiver irom the lightning stroke.
Near to the stroke, the induction field will predominate and a siowly varying
aperiodic wave form will be observed; far away, the radiation field produces
a quasi-periodic wave form. The various components z2ll belong to the same
stroke and different strokes are spaced widely enough so that the noise is of

low density.

A different type of atmospheric noise comes from snow squalls [46].
This is also an electric discharge, but the strokes are much shorter and
weaker than in thunderstorms. While the strokes are more frequent, the
essentially distinct character of the individual received waveforms shows

that this noise is also of the low-density type.

Precipitation static

Airplanes flying through precipitation in the atmosphere become
frictionally charged. If the storm is at all severe, a corona discharge occurs
on the pointed parts of the aircraft, e. g., the wing tips or radio antenna.

The noise thus produced limits radio reception considerably and may cause

a total loss of intelligible functioning. Because of the close connection between
the noise and the weather in which it is produced, it is known as precipitatiOn'
noise [47,48].

The most intense noise is produced from corona on the antenna. Since

aircraft surfaces in practical use charge negatively, the problem is that of
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negative corona from a wire [ 49]. Initially there is a glow along the wire,
which with increasing potential, collects into an active spot giving pulses
from a recurring breakdown. The discharge is initiated by an electron
avalanche in the high field-strength region near the wire. The positive ions
left behind, moving slowly, eventually fall into the negative wire and quench
the discharge by momentarily lowering the potential difference across the
gap. After a recovery time, the field strength becomes high enough to cause
a discharge again. In air the pulse itself lasts about 0.1-0.5 psec while the
recovery time is of the order of 1 Mc/s. These recurring pulses are called

Trichel pulses after their discoverer [ 50].

As the field strength at the wire increases, the frequency of the Trichel
pulses does also, but before the successive pulses merge into a continuous
discharge the first spot saturates and another active spot forms. Because
of the regular recurrence of the Trichel pulses, the individual pulses do not
fit the Poisson noise model; however, the sequences from different spots will
do so, and, as seen above, more spots will form with increasingfield strength

or discharge current.

From the results on airplanes | 51] , @ check with the corona investi-
gations is possible by calculating the threshold field. At the corona thresh-
old, the field on the belly of the test airplane was 250-300 volt/cm which
corresponds to voltages of 25-30,000 volts. For an antenna 0.04 inch in dia-
meter, this means a field at the surface of 250-300,000 volt/cm, which is
the range of values found experimentally [49,52]. The density factor may

be determined from
Yy = (total current)/{current/spot).

The total current figures here are taken from the results of Gunn [51], but
data for the current per spot are not available from the results of Miller
and Loeb [ 49], since they measured the total corona current rather than the
current per spot. This makes a quantitative determination of y impossible.
In air, currents start at 0.1-1 pa at the threshold (this is from one spot) and
increase to values of 50-100 pa, by which time multiple spots have formed.
The total discharge current from the airplane will be from 1 pa to 2000 pa,

depending on the severity of the storm. While a calculation of y as a function
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of field strength is not possible, it seems clezar that the noise density,
varying continuoualy from low to high, will be in the nearly gaussian range
for storms of intermediate intensity. This is qualitatively borne out by

aural observations of the character of the noise [53].

3.4 Celestial noise

A further source of noise is the electromagnetic radiation from
celestial objects, particularly the sun [54] . Galactic and extra-galactic
radiation is present over most of the sky. Since the sources are so distant,
the mechanism of generation is not completely certain; however, it appears
that the radiation can all come from point sources. The continuous radiation
of known point sourcee indicates that the mechanism is probably a thermal
cne, since an equilibrium process appears necessary. A thermal source,
which here means a star, contains so many elementary noise generators

that the noise is certainly gaussian.

Solar radiation

The relative nearness of the sun provides the possibility of deter-
mining much more about its radiation. Several different types of radiation
in the meter-to-centimeter bands have been discerned, one kind always pre-
sent, and several only occasionally present. The ever-present radiation[55,56]
is spoken of as produced by the quiet sun, since it provides a minimum solar
noise level. As it is always present, it represents an equilibrium process

and thus is thermal and gaussian.

The cccasional radiation, produced by the '"active sun)' is of three
types; isolated bursts, outbursts, and enhanced radiation, Isolated bursts
occurring for a few seconds are sometimes present in solar radiation with
peak magnitudes 30-50 db above the level of the quiet.sun. The bursts are
unpolarized and have a sharp but smooth rise and a slow decay. Their in-

frequent occurrence marks them as low-density noise [57].

"Qutbursts' are the most spectacular of the various forms of sclar
radiation. Intensity recordings have gone off-scale after 70 db increases in
power. Outbursts last for several minutes at a time; they are apparently

connected with visible solar flares--at least the larger of them are—and are
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often the cause of complete interruption of short-wave reception. Out-
bursts do not seem to be separable into superposed pulses and so can

not be considered as Poisson noise [58,59].

Enhanced solar radiation

The enhanced radiation from the active sun can be of considerable
importance. While not the strongest form of solar radiation, it is 30 db
higher (in power) than the quiet radiation and lasts longer than the other
active forms [60,61]. The distinguishing characteristics of enhanced
radiation are its duration (several days rather than minutes or seconds,) its
circular polarization, and its correlation with sunspots. Enhanced radiation
is particularly important for our purposes, since it is the only type which ex-
perimental results show to be nearly normal At least two widely different
origins have been proposed to account for this noise. One model assumes that
the radiation is due to the thermal motion of the electrons in the fields near a
sunspot [ 56,62]. This is incoherent and depends on the mean thermal energy;
extremely high temperatures (about 1010 degrees Kelvin) are required to
account for the observed intensities. The alternative proposal is that coherent
oscillations of the plasma may exist [63,69]. This model avoids the temperature
difficulty, but must explain how the coherence can be maintained in the presence
of the large random thermal velocities [63-67,69] in the solar atmospheres
and how the energy can radiate from the generating regions where the group
velocity is zero [63,66-68]. Opinions are too unsettled, and detailed know-
ledge of the solar atmosphere near sunspots too vague to make a detailed
discussion of present theories worth while here; nevertheless, the experimental

results show the features needed for Poisson noise [5 ,70].

Records of moderately dense noise where individual bursts can not be
resolved give correlation times comparable to the duration of individual
bursts discernible on quiet days [70]. Wild [60] has made a careful study
of enhanced noise over the frequency band 70-130 Mc/s for a period of
several months. From his values of average power received and the ob-
served distributions of bursts large enough to be individually measurable,
one can estimate the density of the noise. Wild gives an experimental in-
tensity distribution for the bursts. The middle of the curve follows an

exponential law fairly closely; at the low end the pulses were occasionally
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lost in the background, and so the observed number of burstsis too small;
and at the high end, the infrequent appearance of large amplitude bursts
makes the sampling error large. The average peak power in a burst is
found to be 2.5 x 1020 watts/mz-c/s). The average spectral width of a
burst was 4.5 Mc/s between quarter maximum points. Since the spectral
shape was found to be essentially gaussian, the width of the equivalsnt
rectangular-filter with the same peak value is 3.2 Mc/s. Then the aver-

age total power in a burst is 8 x 10-20 watts/mz.

In order to find vy, oniy the total power received needs further to be
calculated. For purposes of observation, Wild separated the received
wave into a continuum and bursts of amplitude 10-20 watts / (mz-c/s). With
the observed intensity distribution, the average value of the continuum is
0.33 of the total power; including the 60 Mc/s bandwidth, and using the ob-

20

served continuum .75x 10" watts/(mz-c/s), the total power is found to be

135 xlo-zowatts/n'xz, whencey equals 17, in the nearly gaussian range.

3.5 Noise arising from the quantization of charge: shot noise

The various kinds of noise caused by the discreteness of the elemen-
tary particles fit the Poisson model. Of these, shot noise is the simplest
to analyze. In a vacuum tube, the current contains fluctuations because of
the discrete nature of the charge [71]. As long as each electron is emitted
from the cathode independently of the others, viz., in the temperature-lim-
ited and retarding field regions, the Poisson noise requirement is satisfied,
and a density estimatc is straightforward. The transit time in an ordinary

9

tube is about 10 ’ sec, so that

Y = Dre = 5x 1010 KD (3.2)

The noise is broad-band, so that the leading correction term will be of the
order of y -1/2; for a current of 1 ma, this is about 10-4; and the correc-

tion does not rise to 10"2 until the current drops to 0.2 pa, or less.

In the space-charge region of the characteristic, the electrons are
not emitted independently and a different approach to the density problem
is demanded. The problem now is that each emitted electron modifies the

space charge so that succeeding electrons find a larger potential barrier [72]
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Obviously, the change in the space charge is produced in a fairly small
volume around the individual electron. In an ordinary receiving tube the
potential minimumis about 3 volts; the potential due tothe moving electronis
e/41rr°, sothat4x 10_7cm away from the trajectory of the emitted electron, the
modification of the potential minimumislessthan lper centof its prior value.
The quasi-stationary potential suffices because the electrons are moving in

small enough fields so that the retarded potentials are not necessary.

The cathode surface may be divided into square areas of such size that
only 1 per cent of the electrons emitted in the area will produce appreciable
effects outside it, i.e., afringe of width T, aroundthe edges of the square con-~
tains 1 per cent ofthe total area of the square. Thenthe various areas are ef-
fectively independent and a noise density may be estimated. Note that, since
the number of independentareasis fixed, the random-walk model is applicable,
notthe Poissonnoise model. Thelineardimension of one of these areas is
400 r,or l1.6x 10_4cm. With a typical cathode area of0.5cm2, y is2x 107,
safely inthe gaussian noise region. This estimate is at the anode of the tube.
Ifthe networkintervening beiween this anode and the output has a rise time longer
thanthe transit time of the electron in the tube, the noise pulses will be stretched

and y increased.

A consistency check with the previous resultisinstructive. Certainly
the effective density when all electrons are independent will be greater than that

. & 3 hd
space charge is 2x 10 <1> . The
spacecharge regionmay then be expected to start with currents of about 0.5ma.

when they arenot. In fact, YPoisson/Y

A second estimate of the current needed for a space-charge effect may
be made as follows: 1if,onthe average,one electronis presentineach elementary
area, there is sufficient overlapping of electron emissions so that the as-
sumption of independence is untenable. Only about 0.1 of the emitted elec-
trons have enough energy to pass the potential minimum, and consequently

-13

the charge carried from one elementary area is 6 x 10 coulomb/cm2

9

For the transit time of 10~ sec, a 1 cm plate to cathode spacing, and the
cathode area 0.5 cmz, as before, this is a tube current of 0.3 ma, in order

of magnitude agreement with the previous estimate.

Photo-multiplier noise

Photo-multiplier tubes are also sources of noise [ 73-75]. The im-
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portant distinction oetween these and other tube scurces is that the
several stages of electronic amplification produce shot noise with ele-
mentary pulses containing many electrons instead of single ones, as in
the ordinary shot effect. This meauns that the photo-multiplier noise
current fluctuates more intensely than ordinary tube current of the same

mean value [73].

Besides the shot effect, noise can be caused by spontaneous emission
from the photo cathode or any of the dynodes. This current is initially very
small (perhaps 10-14a. ), but electron multiplication again magnifies the
effect to a level requiring consideration. Suchi emission is called a '""dark"

current since it flows regardless of the illumination on the photo cathode.

Photo-multiplier tubes are used mainly for two different purposes,
to measure light intensities, or to count scintillations in radioactivity

measurements.

In scintillation counters, radiation causes a fluorescent screen to

produce glowing spots that activate the photo-multiplier [76,77].

The signal pulses then have a duration of the order of the time constant
of the fluorescent screen, a few microseconds. The noise pulses, on the
other hand, have durations of the order of the transit time through the tube,
about 107 sec [74] . The input time constant of the counter pulse ampli-
fier is made equal to the phosphor decay constant, which is short enough
to resolve signal pulses and long enough to discriminate against the noise
pulses. The noise pulaes at the anode may then be considered &-functions
since they are of such short duration compared to the input time constant.

In a 931A tube, about 5 x 104 "dark-current" pulses are emitted per
second [75]; this gives a y of about 0.1. Dark current noise is thus of the

low-density type in scintiilation counters.

For light intensity measurements, the input time constant is large,
{of the order of seconds in fact) in order to smooth out fluctuations. In
this case, the dark current is certainly gaussian, since y is about 105.
However, the signal current is 8o much larger that the noise may be taken
as entirely shot effect, with the dark current completely neglected. The

transit time is so short compared to the input time constant that the spread



TR189 -31-
may be neglected. The current pulses are then

i(t) = ae exp{ - t/'f} g (3.3)
where a is the overall multiplier gain.

Now, we observe from Eq. (2.11) and (3. 3) that

)\k=kl?<ak>ek . (3.4)

. 2~
2 2 _ eI :
Ny =2 atDe =§F> %YZ (3.5)

Notice that the fluctuation is increased by at least a factor <a> over the

In particular

ordinary shot effect, and that fluctuations in gain produce even larger out-

put current fluctuations.

Since )\1 equals the;. mean current, we have

v = DT/ (a)e, (3.6)

which shows that y is smaller by the gain of the multiplier than for shot
noise of the same mean value and time constant. The gain of the tube is

105 or 106, so that this effect is quite important, particularly for the cur-
rent at the phota-multiplier anode, since then 7" i8 the transit time of the tube.
In the input circuit of the voltage amplifier following the photo~multiplier
tube, the time constant is about 1 sec, so that y is large enough for correc-

tion terms to be safely neglected.

Thermal noise in resistors

Thermal noise from resistors is one of the commonest sources of
noise. From a macroscopic point of view the noise is sufficiently well
characterized as gaussian with the well-known power spectrum W({) =
4k TR [78,79]. The noise is caused by the random motion of the con-
duction electrons of the resistor, achieving its randomness by collisicas
with atoms of the lattice structure, which is not completely regular. For
an order-of-magnitude estimate of the noise density, the Drude theory will
be sufficient [80,81]. In this simple theory, the conduction electrons are
independent, which is necessary for the Poisson noise model to be directly

applicable. Furthermore, the mean free path is independent of the electron
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velocity, while the scattering from a given collision is isotropic.

Here y equals the mean time between collision times the average
number of current pulses passing throcugh a cross section per unit time.
This last is one third the average number of conduction electrons per cubic
centimeter multiplied by the prcduct of the mean velocity and cross-sectional
area. Using the Maxwell-Boltzmann velocity distribution and the independence
of the mean free path,y is found equal to 4/3¢ times the product of mean free

path, cross section, and number of conduction electrons per cubic centimeter.
One has
_ 4
Y= b 7 ENA. g (3.7)
where £ is the mean free path, N the number of conduction electrons per cubic

centimeter, and A the cross-sectional area. The mean free path may be ex-

pressed in terms of the interatomic distance, d; also, the number of conduction

electrons is proportional to the number of atoms, which should vary as d-3.
We have
o e, R
v= N A (3.8)

3nd

d is of the order of 10.8 cm., k{', about 100, and k.N of the order unity, so that

y ¢ 4x10'7 A(em?) (3.9)
The leading correction term to the normal distribution is of order
Y 1/2, which is certainly negligible here.

Non-equilibrium sources of noise

Besides thermal noise, conduction in solids causes current noise,
semiconductor noise, and flicker noise. These last are nonequilibrium
effects; their spectrum is directly proportional to the mean-square current
and inversely proportional to frequency. These phenomena are complex,
each depending apparently on several different mechanisms whose relative

importance is critically dependent on factors not ordinarily under control.

Flicker Noise

Flicker noise is caused by variations in the emission from thermionic
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cathodes over times iarge compared to a single transit time [82,83,84] .

For some reason, certain regions of the cathode surface emit particularly
strongly for shoxrt times. This corresponds to fluctuations in the work
function, probably caused by diffusing ions. A diffusion process leads to a
1/(1 +w2rr2) spectrum, whereqis the lifetime of a diffusing ion; however, if

an appropriate distribution of lifetimes is assumed, a l/w spectrum can be
obtained over any finite interval [84]. At present knowledge of the mechanism

is insufficient to warrant an estimate of noise density.

Excess noise in solids

Certain types of resistors develop noise in excess of the Nyquist for-
mula when current is passing through them [83-85]. Besides the dependence
of noise power on the construction of the resistor (e.g., whether it is carbon
composition or '"'metallized'), different resistors of the same kind of con-
struction and of the same value of resistance, can give noise powers differing
by a factor 20. Here again, exactly to what the fluctuations should be as-

cribed is not known in enough detail to allow a calculation of y.

In semiconductors, two types of current carriers are presert, each of
which produces noise. Excess noise, with the characteristic 1/f spectrum,
is apparently caused by fluctuations in the number of minority carriers [86].
Minority carriers affect the conductivity strongly, since they add to the total
number of current carriers themselves and by lessening the space charge,
also increase the number of majority carriers [87]. In the material not near
an electrode, the current density will be nearly uniform; using the same
reasoning as for thermal noise, we see that y * £ NA. The cross-sectional
area is about the same as for thermal noise; and the mean free path is com-
parable [88]; however, the concentration of minority carriers is much less,
107 or 10_8 of the total number of atoms [89]. The excess noise is thus
much less '"dense' than thermal noise; nevertheless, y will be sufficiently
large so that the noise is effectively gaussian. Evidence has been presented
that another component, due to majority carriers, is present, becoming rela-

tively more important at the higher frequencies (above 10 kc/s) [90,91].

Since this noise is denser than minority carrier noise, it will be

gaussian also.
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Barkhausen noise

The noise in ferromagnetic materials caused by changes in the domain
structure [92] is called Barkhausen noise. As a magnetic field is applied,
two different processes take place. At low values of the impressed field, the
domain boundaries move, with the result that favorably oriented domains be-
come larger at the expense of slightly misoriented domains. With greater im-
pressed ficlds, the direction of magnetization of domains originally oriented
nearly perpendicular to the field is rotated toward alignment with the field,
without any wall motion. Domain rotation produces noise because of the dis-
crete character of the changes of magnetization [93,94]. Inhomogeneities
making the wall motion irregular may also produce noise [95]. As the domain
wall moves past an imperfection, subsidiary walls reaching from the irregu-
larity to the main front are formed; with continued expansion of the main wall,
the subsidiary walls stretch until they break, giving a smooth main wall and
leaving a small stationary domain around the imperfection. Barkhausen
noise has been observed when no domain rotation was occurring, favoring the
above mechanism. Quantitative statements about the relative importance of
these two mechanisms or estimates of the noise density, do not yet appear

possible.
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v
Rectification of Nearly Gaussian Noise

The next task is to use the distributions previously found in sectionll,
with specific forms of the correlation function and semi-invariants suggested
by section III, to determine the most important statistical parameters ofthe
output of an a-m receiver with a c-w signal and nearly gaussian noise im-

pressed on the input.

4.1 Model of an a-m receiver

In an amplitude modulation system, the signal is transmitted from
source to receiver at a relatively high frequency, which is demodulated by
the receiver to recover the envelope of the high-frequency variation, which
represents the original signal. The noise is generated in the channel and
in the first sections of the receiver. The receiver contains a band-pass
filter which eliminates all spectral components except those in a narrow-
band around the central frequency, and a demodulator, composed of a half-
wave y-th law detector followed by a low-pass filter. The relation between
output and input of a nonlinear device is called the dynamic transfer charac-

teristic; for the half-wave v th-law device, we have

I=g(V)=|BVY V>0 (4.1)
0o v<o |,

where I is the output, V the input, and § an appropriate proportionality
constant. The input, V, is a narrow-band signal and narrow-band noise,

but the nonlinear device changes the spectral composition, so that the out-
put is composed of spectral zones lying at multiples of the central frequency
of the input, the (ideal) low-pass filter eliminates all these zones except the
low-frequency one, corresponding to the zeroth harmonic. A block diagram
is shown in Fig. 3, together with typical waveforms and spectra at various

points in the circuit.

The system treated here is of course, an idealization of actual ones.

Two of the more critical approximations are those of representing actual
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modulations, which are functions of time, by a constant value and represent-
ing the dynamic detector characteristic by a simple power law, without in-
cluding saturation effects at high voltages and smoothing of the discontinuity
in the slope at the corigin. Nevertheless, the idealized system in most appli-

cations is a sufficiently close representation to warrant analysis.

Since there is noise present, a complete analysis should give the prob-
ability distributions of the output. This is a difficult problem which has been
solved only for the quadratic detector ( v =2), [96,97] an important and par-
ticularly simple special case. We shallcalculate the correlation function of
the output, a much simpler problem and one whose solution yielda considerable
insight into the effects of noise in the systemm. Twodifferent methods can be
applied, corresponding to the different statistical descriptions of the input by
the distributions of either the instantaneous value or of the envelope and phase.
The former of these is better suited to the major problem, but the envelope
and phase description give a better picture of the zonal structure, so we

shall use it initially.

4.2 Output power

The output can be expanded in a Fourier series,

o0

I = g[Rcos(wot -0)] = Z enan(R)cos n(wot - 9), (4.2)
n=0
™
an(R) = _21;- f g[Rcos(wot - 0)] cos n(wot - Q)dwot ,
-

in which € is the Neumann discontinuous factor, €, = 1, € = 2 for n> 1.
The envelope and phase are also functions of time, but they vary so little
during one period of cos Wt that they may be considered constant in calcu-

lating an(R).

The output correlation function is then
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[0.0)
R(t) = <1112> av = E ¢, {a(R))a(R)cosn(ut-6,+6))> _ .
n=0

(4. 3)

Note that only the phase difference occurs in this equation, so that the re-
quired probability distribution can always be found, as in Eq. (2.22), from
the distribution of instantaneous values. The power in each spectral zone,
P , can be found from the correlation function for t=0, P_=¢ < aZ(R) >

n n n n av
since now 92 = 91. The d-c power equals the square of the mean value,.

_ . o
Pd-c = \ao(le - For the half-wave detector, we find

_ BR T (v +1)
2v+ lr\(vi-n +lr(v-n +1

a
n

(4.4)

Equation (4.4) shows that the detector output possesses the same dependence
on the input envelope for z2ll zones, so thatthe only difference between zones,
is in a multiplying factor. Blackman [98] has previously pointed out this
result, though stating the implication in less general terms. This is that
the relative power per zone is a constant independent of the statistics, ie.,
regardless of what the input is, the detector places the same percentage of

the total output power in each spectral zone.

Such a result is worthy of note, since it is by no means intuitively
obvious. Indeed, it seems possible that some input could be found that
would contribute anextra share of power to the higher zones, and adifferent
input whose power would be distributed mostly to the lower zones. For the
v th-law detector, no such input exists;however, this detector is apparently

a very special case.*

*Clearly, a sufficient condition that the result should hold is that g(Rcos @) =
gl(R)gZ(cos 0), and the v-th law detector does, in fact, satisfy this. Neces-

sary and sufficient conditions are not obvious; however, it seems likely that
they are somewhat but not very much weaker than the above, the point being
that if the envelope and cosine factors can not be separate before the integ-
ration is performed, n and R are likely to be inextricably mingled in the re-
sult. As anexample, if ahalf-wave rectifier with saturationis represented by

g(v) =p[ 1-exp(-av)], then a (R)= B[ & o Lla R)], and the relative power inthe zones
quite definitely depends on the inp’utnstafl}stics.
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The low-frequency zone is the most important in the treating of the
receiver problem, so that all results are given in terms of it. These re-
sults can be altered to give the power in a different zone, if desired, by
multiplicaticn by an appropriate constant factor. The averages are evalu-

ated in Appendix V; for the total low-frequency power, we have

3 . viv-1) '
P =q_iv_*L (_Z_) l’ F (-vil; -p)+LT—— (Fil-v +251-p) +Oy )}3

47 (w + 1) 31y
(4.5)

and, for the d-c power,

2 !_(V_]_) i 2
Pa-ffé"lii & {1 Sl p“%i;— lFl('%+2;1"P)+O(YZ)} ,

(4.6)

2
where p = A;/Z;pi:; the input signal-to-noise ratio. If v in xq. (4.5) or
v/2 in Eq. (4.6) is a positive integer, the nearly gaussian series termin-
ates and the above expressions become exact; furthermore, the confluent

hypergeometric functions reduce to polynomials.

These equations are plotted in Figs. 4 and 5 for gaussian noise and
for a nearly gaussian noise of comparatively low density. As these graphs
show, the change in the output power caused by the nongaussian statistics
is small for small valuzs of v, and small for large values of p. When v
is greater than one, the nongaussian output power, (Fig. 4), is greater
than in the gaussian case; while for v less than one, either may predomi-

nate, depending on the signal-to-noise ratio.

When v and p are both less than one, the nongaussian power is always
less than the corresponding gaussian one; however, if p is greater than one,
the nongaussian power is first greater, then less, the crossover point in-
creasing from v equals zero to v equals one as p increases from onetoin-
finity. For large signal-to-noise ratios, the output power is composed
mostly of S X S (signal X signal) and S X N (signal X noise) interaction, while
with small signal-to-noise ratios, the power arises rmostly fromn x n

(noise X noise) interaction. There is no a priori reason to believe that the
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nongaussian result will bear the same reiation to the gaussian in the one
case as in the other, and in fact, Eq. (45) shows that they do not. Ana-
lytically, these facts depend on the behavior of the confluent byhypergeo-
metric functions, which are discussed in more detail in Appendix V. The
discussion on the total power carries over immediately to the d-c power
except that all the values of v previously mentioned must now be multi-

plied by two.

The asymptotic series for the hypergeometric functions of Eqs. (4.5)
and (4. 6) show that the leading nongaussian term is of order p_z, while
the leading noise term is of order p-l. Thus, in the strong signal case,
as well as the usual suppression of noise relative to signal, there is an
additional suppression of deviations from gaussian statistics {except for
values of v near 1). The figures and equations show that in order to detect
the type of statistics present in an experimental problem by a power meas-
urement, the detector used should have a high power law and the noise power
should be measured without any signal present. The first of these require-
ments is intuitively rcascnable, because, since the tails of a distribution
are particularly sensitive to the exact type of statistics, a large value of

v , which accentuates the effect of the tails, is desirable.

From a practical point of view, however, large values of y will be
more sensitive to saturation effects. In an actual detector the maximum
output will always be limited, either from saturation in the detector itself
or in the i-f amplifier preceding A it. The law of the detector, of course,
has no bearing on the overloading of the i-f amplifier, but large values of
v will require the detector to produce large outputs without distortion when
only moderate inputs are present. Four or five would probably be as high

a value of v as one would want to choose.

The second requirement above is not obvious, since a locally injected
signal of known strength increase the output noise power because of the
cross-modulation products of the signal and the noise present in the output
of the detector. For low input noise levels, it may be important to be able
to adjust the output ncise power to a level large enough to be convenient.
One might think that cross-modulation would also accentuate the difference

between gaussian and nongaussian noise; however, the above figures and
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equations show that quite the contrary is the case; in fact, the power differ-
ence is not only less relative to the total output power with increasing signal -
to-noise ratio, but even decreases in numerical value. Thus, although adding
a signal may be worthwhilein order to measure noise power, the method is

entirely unsuitable for distinguishing different types of statistics,

4.3 The output correlation function

For evaluat'ng the correlation function, the distribution of the instan-
taneous value is preferable. Whilz the envelope and phase distributions can
be used, the final result is then in a less tractable form. The correlation
function can be expressed in terms of the characteristic function by using the
complex Fourier transform of the dynamic characteristic [99,100],

Q0

f(iz) =f g(Vye \VZay,
-0
g(v) = Zl" fliz)e'V = dz, (4.7)

where g(V) is zero for V less than some 'Vo’ and of no greater than ex-
ponential order at infinity, and C is a horizontal contour in the complex z-
plane lying below the singularities of f(iz). The output correlation further

becomes

RT(t) =<g(V1)g(V2)> = (-2_)lz_ fdzl fdz.Z f(izl)f(izz): <exp(iz1V1+i22Vz)>aV
b
c c
(4.8)

and the average of the exponential defines the second-order characteristic

function (Eq. 2.2).
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The input signal to the detector in this case is the sum of a sine wave and
random noise which are independent of each other, sc that the characteristic
function in Eq. (4.8) is the product of the separate characteristic functions

of the signal and the noise. Since both inputs are narrow-tand, the twe char-
acteristic functions are expanded in Fourier series in order to exhibit the
zonal structure of the correlation function; for the detector problem, we

need only the correlation function of the low-frequency zone, R(t).

The detailed evaluation is carried out in Appendix VI, here we men-
tion that two forms of the correlation function are possible, a convergent
power series in p, the input signal-to-noise power ratio, useful when the
signal is small, andanasymptotic series in 1/p useful when the signal is large
relative to the noise. These series are given in Eq. (VI. 13) and (VI. 14) of
the appendix, respectively. The general results are sufficiently complicated

so that a study cf various special cases is deairable.

The leading terms of the series in p can easily be found from Egq. (VI1.15)
however, the equation remains difficult to interpret unless the hypergeometric
functions involved reduce to simpler functions. The two most important
values of V are one and two, corresponding to the linear and square-law
detector, respectively. The square-law case is particularly simple, viz.,

R(t):ﬁ;pE [1+r_2 + ZAZ;ZH) + 2p(l+ ro)+p2]; v =2. (4.9)

3y
This result is exact for all p and y, all other terms in the general result
vanishing. For this particular value of v, the output voltage is the same,
except for a scale factor, as that from a full-wave squaring device; ac-

cordingly, the correlation function can be calculated directly as a moment,

2 2 2
Rp(t) = ET.QV“O) + A coswt ] [V(t, +t) +A_ cosw(t +t)] > .

(4.10)

This is by far the siraplest way to obtain the output correlation function;

unfortunately, the method can only be applied when v is an even integer.

For the linear detector, the hypergeometric functions reduce to complete
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elliptic integrzls, and the leading terms are

2 A (t) +/\ (1) A (1)
R(t) =EZE‘[E + 2B +—:-:g- (K<2E) = =nn ;\‘3 2r D+ —2%5, (2D +K)
v

12 12§ 124y
M40 E 2E-B
+p|E+r B+ 4E - 2K - —25— + 1 o
12y -1 l-r
o] o
1\31“-) +A13(t) El‘o -B Azz(t) E+2B 3B
2 + - — +r | - 2C]
T 124 | 1.2 1.8
1241 =t 12y oy o
+ 0(y'2,p2) ; v=l. (4.11)

In this equation, the functional dependence of ro(t) on t, and of the
elliptic integrals on ro.e.g. E(ro), has not been explicitly expressed.
If it is thought preferable, the various elliptic integrals appearing can
be expressed in terms of any two, preferably K (ro) and E (ro) the complete
elliptic integrals of the first and second kind respectively, by using the re-
lations [ 101]

E+({(l-r )X B,
K-E-= rZD,
o
(Z-rz) K= 2E + r4C. (4.12)
o o

All five integrals have been tabulated, e.g., in Jahnke and Emde. This
result for the linear detector is not exact, either in p or in y; furthermore,
there is no essentially simpler way of obtaining this result, in contrast to

the case of the quadratic detector.

The correlation function when the signal is much stronger than the
noise is considerably simpler than for the weak-signal case. The leading

terms of the result for a vth-law detector are

52T’ (v+l) p v, 2 1+r (2') 2 v
R(tﬁm—- ( q’& 1+2(§) B +—2—' (1’) —'1) }(1*'1'0)*'4(2')(%‘1)1'0 +
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L1 v 2 v, v v.2 v 2 ]

\ ;—F = - 1) /\40 +25(5 - D))+ (N5) 4 [2(-2) + {5 -1) ]AZZJ
-3 -2

+O0(p 7, Y 7). (4.13)

The correlation function shows the same suppression effects previously
mentioned 1n connection with the output power,. viz., the first noise term
is of lower order (in p) than the signal, and the first non-gaussian term

is of lower order than the first gaussian one.

4.4 Noise models

To proceed further requires explicit models of the noise statistics

in order to fix the time dependence of the semi-invariants. An immense
variety of types is naturally possible; three models among those felt to be
the most important are treated here. The amplitude, shape of the envelope,
and the phase of the individual pulses are able to affect the time dependence
of the statistics, while, in our models, time dependence enters through the
shape of the pulse envelope alone. This apparent restriction is justified as
being usually true of actual noise sources (cf. Appendix IV where this point
is treated in connection with radar clutter) and as being irrelevant to the
real problem of choosing a suitable time variation. By this last is meant
that the time dependence of the semi-invariants is what really matters and
this can remain the same whether ascribed to pulse envelope, amplitude,

phase, or some combination of all three.

Pertinent data on the three models are summarized in Table 4.1. The
exponential pulses represent impulses after having passed through a single-
tuned circuit, as might occur with precipitation static in an aircraft receiver

of shrimp noise in a sonar.

Although a single tuned circuit is not an accurate model of the tuned
stages of a receiver, this type cf time dependence is important because it is
necessary (and sufficient) if the process is toc be Markoffian in the limit of

increasing density [ 102].

The pass band of an actual receiver is an involved function of the

number of stages and the exact coupling network between stages. As
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an abstraction from the details associated with any particular i-f strip,

we shall take a pass band of gaussian shape as our model, which preserves
the essential features of a pass band while remaining analytically tractable.
Admittedly, a gaussian pass band is not physically realizable, but it is a
good approximation to the magnitude-frequency curve of actual amplifiers
(if not to the phase-frequency curve}, and possesses the important virtue of
simplicity.* Impulses passing through this i-f amplifier will become

gaussian pulses as in the second modecl of Table 4. 1.

The third type chosen is that of square pulse envelopes of finite duration.
This illustrates noise whose values are independent when separated by a
sufficiently long, but finite time. The model fits the sonar and radar clutter

problem when relative motion between the transceiver and scatterers is slight.

Notice that, for these three cases, all the semi-invariants can be ex-
pressed as functions, in fact powers, of the input correlation. Accordingly,
the time enters only on a normalized scale and only implicitly through the
input correlation function. Figure 6 shows the time dependence of the fourth-
order semi-invariants compared to the correlation function, showing the ex-
tent of the more rapid decrease to zero of the higher semi-invariants.** The

corresponding figure for the linear model is obvious.

4.5 Results for the quadratic and linear detectors

Table 4.2 lists the correlation functions after a quadratic detector for
the three different noise models. The unnormalized values of the functions
in the table are not of primary interest here since the parallel problem con-

cerning output power has been discussed earlier. The correlation function

- - e = = e -

*H. Wallman has shown that the pass band of cascaded networks whose individual
step function responses have no overshoot tends towardthe gaussian (Second Syin-
posium in Applied Mathematics, Am. Math. Soc. 1950, p. 91). Furthermore it
seems likely that one can extend these results to any cascaded network except

to those tuned for a Butterworth response.

**The linear model is one extreme of possible time behavior in thatits semi-
invariants of all orders decrease nofaster thanthe correlation function. One
may conjecture that no /\., (t)candecrease faster than the square of the correla-
tion function, in which case’the other two models represent the other extreme;
however, we bave been unable to prove this.
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TABLE 4,2

CORRELATION FUNCTIONS FOR

THE QUADRATIC DETECTOR

= o Pltl

Exponential Model: LN
2.2
R(t) 5 [{(1+p)° + Zpro +(1 + Y)ro]

842
Gaussian Model: - 2

22
Ry =B 1+ )24 2pr_ + (14 2)e)]

2kl
Linear Model: r = {1- Bl ,Bltl<1
0 »Bltli =1

2 2
Ry =B [+ p?ezpe i, vl




EXPONENTIAL CORRELATIGN
FUNCTION

0.5}
0.0 s
.0
GAUSSIAN CORRELATION
FUNCTION
0.5} .
0.0
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F1G.© NORMALIZED SEMI-INVARIANTS
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also gives information about statistical dependencs in time (or equivalently,
the spectral distribution of power) which is most clearly exhibited by normali-
izing thecorrelation function so that it varies from one to zero. Accordingly,

we define

= R(t) - R(oo)
rout(t) "RO-R(®) (4.14)
The more rapidly rout(t) drops to zero, the less correlation there is

between successive sarnples of the output wave.

Some statements about the general effects of signal-to-noise ratio and
noise density can be made immediately. Passing through a nonlinear device
cannot increase the correlation present in the iaput wave , whence rout(t)<—ro(t)’
regardless of the values of p or y. Furthermore, the noise suppression effect
when p is large means that the most rapid decrease of rout(t) will occur when
no signal is present and that, with increasing signal rout(t) willtend to ro(t).

out(t)
for gaussian and nongaussian noise of fixed density and equal input power wiii

The nongaussian suppression effect means that the difference between r

decrease as the signal is increased. The effect of nongaussian noise on the
amount of correlation in the output depends in an involved fashion on the
detector law, signal-to-noise ratio, and noise model, so that the discussion of

this point is best deferred till after the presentation of some specific resulis.

Figures 7,8 and 9 show rout(t) for a quadratic detector and the three
different noise models. Note that the three general features of rout(t) men-
tioned above are borne out by the figures. For the quadratic detector, the
exponential and gaussian models give less correlation with nongaussian noise
than with gaussian, while for the linear model, the opposite is true. Because
of the simplicity of the expression for the correlation function, we can see
quite easily why this is so. Gaussian noise after the quadratic detector has
one undistorted noise term (Zpro, arising from s x n intermodulation) and
one scrambled noise term (rcz), from n x n modulation). If the noise is non-
gaussian an additional n x n term enters, containing the semi—invariant/\zz(t).
For the exponential and gaussian models, this term adds to the scrambled
noise to make the nongaussian result less correlated than the corresponding
gaussian one, while for the linear model, the semi-invariant terrm adds to the

undistorted noise term, acting to increase the correlation over the gaussian
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arnount.

Table 4.3 shows the correlation functions for the linear detector. Be-
cause the expressions do not terminate, it is not possible to cover the entire
range of values of p and y. Strongly nongaussian noise (y= 1) canbeincluded,
however, because of the numerical factors involved in the Edgeworth series.
The first correcticn term is about the size of 22.!\_4 4!4;2 or 1/4y. Thesecond
is in two parts, one half the square of the first term or 1/32y2 and one involving
sixth-order semi-invariants, 23./\60/6!413 or 1/36y2, both of which are suf-
ficiently small to be neglected inasmuch as the first correction is itself not
large compared to the gaussian part of the results. The correlation function
is much more sensitive to the dependence on signal -to-noise ratio. The strong
signal series is sufficiently accurate when p is greater than two; the weaksignal

series, however, can only be used for p = 0.5 at the most.

The normalized output correlation functions are shown for the linear
detector in Fige., 10-12. Previously, with the quadratic detector the nongaussian
correlation function was either always greater or always less than the correspond-
ing gaussian one. For the linear detector, however, the correlation is greater
for nongaussian noise when the signal is weak and greater for gaussian noise
when the signal is strong. An additional complication is that the curvss for
gaussian and nongaussian noise cross each other near the origin of time when
p is large, although for by far the most of the time the nongaussian curve lies
below. The curves again illustrate that the difference between the two types
of noise is greatest when the signal is small, and that the difference is sup-
pressed when a strong signal is present. For the linear model the suppression

is of higher order, so that the difference is particularly small,

4.6 The effect of nongaussian statistics in general

The effect of the nongaussian statistics on r___ (t) has varied in these

two cases, depending in a rather obscure manner %‘: the law of the detector,
noise model and signal-to-noise ratio, so that an investigation of general

values of v is worth while; however, since the linear and quadratic detectors
are by far the most important, a qualitative look at the results for arbitrary

values of v suffices to complete the discussion of the cutput correlation function.
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The primary point in question is whether nongaussian noise increases or
decreases the correlation of the output compared to gaussian noise of the
same input power. We have obtained the sign of the change in correlation

as a function of v and p for the special cases above and for various limiting
values of v and p, but have not been able to get a really satisfactory assurance
that no additional changes of sign occur for intermediate values of v or p.

The best way to present the result is to show the first quadrant of a (v,p)-
plane in which the boundaries and regions of increased or decreased cor-

relation are explicitly labelled.

The behavior along the lines v = 1 and v = 2 is known from the results
of Figs. 7-12; and, in addition, we have found the sign of the change in cor-
relation for large p and v, and for p = 0 and all v. Appendix VII gives the

explicit forms of r __ (t) from which Fig. 13 was constructed.
out

The dependence of the change in the total output power and in the d-c
power on the law of the detector leads one to expect that the normalized out-
put correlation function should also exhibit some such settled type of be-
havior when v is larger than some numb<r, perhaps not exactly two. Infact,
Fig. 1]l bears this out. Nonetheless, while all the information that appears
in the figure is correct, and any additional changes in the behavior of rout(t)
seem unlikely, it cannot be categorically stated that all the changes in cor-

relation are included.

The figure shows that, with the exponential and gaussian models, when
the law of the detector is greater than two, the correlation of the output noise
is greater when the noise is nongaussian. Only when the detector law isless
than two does the relative strength of the signal affect the result. Nearv=1,
in the shaded area, the output correlation functions for gaussian and non-
gaussian noise cross each other<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>